- (5) C. T. Lin and N. Sutin, J. Phys. Chem., 80, 97 (1976).
 (6) G. Sprintschnik, H. W. Sprintschnik, P. P. Kirsch, and D. G. Whitter, J. Am. Chem. Soc., 98, 2337 (1976); 99, 4947 (1977).
- (7) Reduction of quenching rates for the hexacarboxy compounds compared to 1 could be attributable at least in part to rendering of the redox process energetically less favorable. However, for 7, for example, the shift in the Ru(III)/Ru(II) couple is small and the major effect clearly is due to other factors.
- (8) R. C. Young, C. P. Anderson, D. J. Salmon, and T. J. Meyer, J. Am. Chem. Soc., 99, 1980 (1977).
 (9) C. Creutz and N. Sutin, J. Am. Chem. Soc., 98, 6384 (1976).
 (10) Although 1* can be quenched by high concentrations of triethylamine, there
- is no permanent reduction on even long-term irradiation and a rapid back reaction can be observed.
- (11) This can be regarded as a minimum value since the reaction is extremely water sensitive and it is difficult to absolutely dry acetonitrile.
 (12) C. P. Russell, Anal. Chem., 35, 1291 (1963).
 (13) P. J. Smith and C. K. Mann, J. Org. Chem., 34, 1821 (1969).
- (14) S. G. Cohen, A. Parola, and G. H. Parsons, Jr., Chem. Rev., 73, 141 (1973),
- (15) S. G. Cohen and R. J. Baumgarten, J. Am. Chem. Soc., 87, 2996 (1965).
- (16) C. P. Andrieux and J.-M. Saveant, Bull. Soc. Chim. Fr., 4671 (1968).

Patricia J. DeLaive, J. T. Lee, Hertha W. Sprintschnik H. Abruña, T. J. Meyer, David G. Whitten*

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514 Received June 20, 1977

Direct Reaction of Dibromoborane-Methyl Sulfide, HBBr₂·S(CH₃)₂, with Alkenes. The Remarkable Reactivity of HBBr₂·S(CH₃)₂ as a Hydroborating Agent as Compared with Related **Dichloroborane Derivatives**

Sir:

In contrast to dichloroborane-ethyl ether and dichloroborane-methyl sulfide, which require the presence of a Lewis acid, usually boron trichloride, for the satisfactory hydroboration of alkenes, the new reagent, dibromoborane-methyl sulfide, readily hydroborates representative alkenes directly. This development makes readily available for the first time such alkyldibromoboranes and the numerous derivatives into which they can be transformed. At the same time, a fascinating theoretical question is raised. Why should HBBr₂·SMe₂, which theory predicts and experiment confirms to be a stabler addition compound than HBCl₂·SMe₂, be a more reactive hydroborating agent?

Monochloroborane-ethyl ether, H₂BCl·OEt₂, and monochloroborane-methyl sulfide,² H₂BCl·SMe₂, readily hydroborate alkenes (eq 1).

$$RCH = CH_2 + H_2BCl \cdot SMe_2 \xrightarrow[25 \circ C]{} \xrightarrow{\text{pentane}}_{25 \circ C} (RCH_2CH_2)_2BCl \cdot SMe_2 \quad (1)$$

However, the dichloroborane derivatives are much less reactive hydroborating agents.^{2,3} They require the presence of a Lewis acid, generally BCl₃, to achieve simple hydroboration, without redistribution (eq 2).

$$RCH = CH_2 + HBCl_2 \cdot SMe_2 + BCl_3 \xrightarrow[25 \circ C]{\text{pentane}} RCH_2CH_2BCl_2$$

+
$$Cl_3B \cdot SMe_2 \downarrow$$
 (2)

The lower reactivity of the dichloroborane derivatives was attributed to the stronger Lewis acidity of HBCl₂, reducing the dissociation of the addition compounds, HBCl₂·OEt₂ and HBCl₂·SMe₂, over that of the monochloroborane derivatives.2.3

Boron tribromide is a stronger Lewis acid than boron trichloride.^{4.5} Consequently, we had anticipated that HBBr₂. SMe₂, would be even less reactive than the dichloroborane

Table I. Directive Effect in the Hydroboration of Olefins with Dibromoborane-Methyl Sulfide in Refluxing Methylene Chloride.

		Rel yields of products, %	
Olefin	Product	BBF_2 ·SMe ₂ ^a	H_2BBF SMe ₂ ^b
1-Hexene	1-Hexanol	99.6	99.6
	2-Hexanol	0.4	0.4
Styrene	2-Phenylethanol	96	96
	1-Phenylethanol	4	4
2-Methyl-1- pentene	2-Methyl-1-pentan- ol	98	98
r	2-Methyl-2-pentan- ol	2	2
cis-2-Pentene	2-Pentanol	67	63
	3-Pentanol	33	37
2-Methyl-2- butene	3-Methyl-2-butanol	93	97
	2-Methyl-2-butanol	7	3
1-Methylcyclo- pentene	trans-2-Methyl- cyclopentanol	98	97.5
	1-Methylcyclo- pentanol	2	2.5

^a Total yields were 95 \pm 5%. ^b At 25 °C in CH₂Cl₂.⁶

derivatives. Accordingly, our early experiments with this new hydroborating agent utilized BBr₃ as a coreagent. However, a fortunate blank experiment revealed the error of our theoretical extrapolation. This experiment revealed that HBBr₂·SMe₂ was capable of reacting directly with representative alkenes without added BBr3. Consequently, we undertook to explore this unexpected development.

The more reactive olefins react at a satisfactory rate at 25 °C. However, the reaction times for less reactive species are undesirably long at this temperature. Fortunately, essentially all reactions go to completion in 3 to 6 h in refluxing methylene chloride, 1 M in each reactant. Accordingly, we adopted this as our standard reaction condition (eq 3).

$$RCH = CH_2 + HBBr_2 \cdot SMe_2 \xrightarrow[40 \circ C]{CH_2Cl_2} RCH_2CH_2BBr_2 \cdot SMe_2$$
(3)

The directive effect in the hydroboration stage was determined by oxidizing the intermediate with alkaline hydrogen peroxide and examining the product by GC. The results are summarized in Table I.

Perhaps the only unexpected feature is the formation of 7% of the tertiary derivative in 2-methyl-2-butene, enhancing the 3% previously observed for H₂BBr·SMe₂.⁶ These values are considerably greater than those observed for H₂BCl·OEt₂,¹ $H_2BCl \cdot SMe_2$,² and even $H_3B \cdot O(CH_2)_4$.⁷

The reaction appears to be quite general (Table II). The products are formed as the RBBr₂·SMe₂ addition compounds, and can be isolated as such by vacuum distillation.

The alkyldibromoborane can be freed from dimethyl sulfide by distillation in the presence of 1 mol equiv of boron tribormide (eq 4).

$$RBBr_2 \cdot SMe_2 + BBr_3 \rightarrow RBBr_2 + Br_3 B \cdot SMe_2 \downarrow \qquad (4)$$

The product, RBBr₂·SMe₂, is readily converted into the corresponding boronate by treatment with NaOCH₃ in methanol (eq 5).

$$RBBr_{2} \cdot SMe_{2} + 2NaOCH_{3} \xrightarrow{CH_{2}Cl_{2}} RB(OCH_{3})_{2} + SMe_{2} + 2NaBr_{4} \quad (5)$$

The following experimental procedures are representative.

Table II. Synthesis of Alkyldibromoborane-Methyl Sulfide Addition Compounds and Their Derivatives by the Hydroboration of Olefins with Dibromoborane-Methyl Sulfide, HBBr₂·SMe₂, in Refluxing Methylene Chloride

Alkyldibromoborane derivative	Isolated yield, %	Bp, °C (mm)
<i>n</i> -Hexyldibromoborane-methyl sulfide	91	97-100 (1)
3-Hexyldibromoborane-methyl sulfide	90	73-75 (2.2)
2-Methyl-1-pentyldibromoborane-meth- vl sulfide	93	82-85 (1.6)
Cyclopentyldibromoborane-methyl sulfide ^a	93	140-144 (2.1)
trans-2-Methylcyclohexyldibromobor- ane-methyl sulfide ^b	86	68-69 (0.5)
n-Hexyldibromoborane	71	56-58 (0.9)
Dimethyl n-hexylboronate	83	84-86 (35)

^a Solid at 25 °C, contained 18% of the uncomplexed compound. ^b Contained 19% of the uncomplexed compound.

Dibromoborane was prepared by a slow, dropwise addition of 80.2 mL (212 g, 846 mmol) of BBr₃ to a mixture of 40.0 mL (423 mmol) of H₃B·SMe₂ and 62.1 mL (52.6 g, 846 mmol) of methyl sulfide at 0 °C, followed by stirring at 40 °C for 12 h. Under these conditions, the redistribution is essentially complete (eq 6).

$$H_3B \cdot SMe_2 + 2SMe_2 + 2BBr_3 \rightarrow 3HBBr_2 \cdot SMe_2 \quad (6)$$

The resulting colorless, viscous liquid (at 40 °C) was characterized by spectroscopic methods.8 It was 7.8 M in active hydride. No other boron species were detected in significant amounts by ¹¹B NMR. Therefore, the material is 7.8 M in the desired reagent, HBBr₂·SMe₂.

1-Hexene, 100 mmol (12.5 mL), was dissolved in 75 mL of CH_2Cl_2 in a flask fitted with a reflux condenser and maintained under nitrogen. To this flask was added 100 mmol (12.8 mL) of HBBr₂·SMe₂ and the reaction mixture was heated under reflux for 3 h. After the mixture cooled to 25 °C, the solvent was removed using a water aspirator. The product, distilled at 97-100 °C (1 mm), was obtained in a yield of 29 g, 91%. Examination of the ¹H NMR spectrum revealed a CH₃ signal at δ 2.45, characteristic of the RBBr₂·SMe₂ derivatives.

The following procedure was used to prepare free *n*-hexyldibromoborane. Following completion of the hydroboration stage the reaction mixture was brought to 0 °C and 105 mmol (10.0 mL) of BBr₃ was added. The reaction mixture was stirred at 25 °C for 1 h. Solvent was removed with the aid of a water aspirator. A white solid, Br₃B·SMe₂, separated. Distillation gave 18.0 g (71%) of *n*-hexyldibromoborane, bp 56–58 °C (0.9 mm). (The bath temperature was maintained below 100 °C to avoid melting of Br₃B·SMe₂, mp 108 °C.)

To obtain the dimethyl boronate, the hydroboration reaction mixture was cooled to 0 °C and treated with 200 mmol of CH₃ONa in methanol (4.5 M). After 2 h at 25 °C, the solvent was removed and the product distilled (without separating the precipitated sodium bromide) to obtain 13.1 g (83%) of dimethyl *n*-hexylboronate,² bp 84-86 °C (35 mm)

As mentioned earlier, this ability of HBBr₂·SMe₂ to hydroborate alkenes directly was unexpected. The reactivities of the borane etherates and borane-methyl sulfides decrease in the order $H_3B \cdot OR_2 > H_2BCl \cdot OR_2 > HBCl_2 \cdot OR_2$, and $H_3B \cdot SMe_2 > H_2BCl \cdot SMe_2 > HBCl_2 \cdot SMe_2$. This was attributed to the increase in the Lewis acidity of the borane component with the number of chlorine substituents: $H_3B < H_2BCl$ < HBCl₂ < BCl₃.⁸ It was believed that the reaction proceeds via a prior dissociation of the addition compound. The stabler the complex, the smaller the amount of free borane, and the slower the hydroboration.

It is known that BBr₃ is a stronger Lewis acid than BCl₃, attributed to decreased resonance contributions of the boron-bromine bond.⁴ According to the above interpretation, the bromoboranes should be more acidic than the corresponding chloroboranes: $BBr_3 > BCl_3$; $HBBr_2 > HBCl_2$; $H_2BBr > H_2BCl$. Since $HBCl_2 \cdot SMe_2$ fails to react with olefins at a convenient rate, HBBr₂·SMe₂ was expected to be even less reactive.

Some support for this prediction was obtained by ¹H NMR observations.⁸ In CCl₄ solution, Cl₃B·SMe₂ readily exchanges with excess SMe₂. On the other hand, such exchange was not observed for Br₃B·SMe₂. This was attributed to the greater stability of the bromine derivative. Similarly, HBCl₂·SMe₂, undergoes such exchange, whereas HBBr2.SMe2 does not, apparently confirming the greater stability of the latter.⁸

There is evidence that π electrons, such as those in benzene, can interact strongly with the Br₃B·SMe₂ addition compound.^{8,9} Possibly, a similar phenomenon occurs involving the π electrons of the alkene and the dibromoborane adduct, HBBr₂·SMe₂. If so, the hydroboration may involve a direct transfer of the HBBr₂ moiety from sulfur to the π electrons.

Irrespective of the final theoretical interpretation of this fascinating new development, it has important synthetic implications. It provides a new stable monofunctional hydroborating agent which can be used in the absence of added Lewis acids. It makes available a convenient synthetic route to the alkyldibromoboranes, not previously available. It makes possible, for the first time, the systematic exploration of their chemistry. Finally, it opens up a more convenient route to the alkylboronic acids and esters and to the many synthetic applications for which they can be utilized.

References and Notes

- H. C. Brown and N. Ravindran, J. Am. Chem. Soc., 98, 1785 (1976).
 H. C. Brown and N. Ravindran, J. Org. Chem., 42, 2533 (1977).
 H. C. Brown and N. Ravindran, J. Am. Chem Soc., 98, 1798 (1976).
- (4) H. C. Brown and R. R. Holmes, J. Am. Chem. Soc., 78, 2173 (1956)
- (5) M. J. Bula and J. S. Hartman, J. Chem. Soc., Dalton Trans., 1047 (1973).
- (6) H. C. Brown and N. Ravindran, *Synthesis*, in press.
 (7) H. C. Brown and G. Zweifel, *J. Am. Chem. Soc.*, 82, 4708 (1960).
- (8) H. C. Brown and N. Ravindran, Inorg. Chem., in press.
- (9) See Figure 1 in ref 8.
- (10) Postdoctoral research associate on NSF Grant No. GP 6942X and 41169X.

Herbert C. Brown,* N. Ravindran¹⁰

Richard B. Wetherill Laboratory, Purdue University West Lafayette, Indiana 47907 Received July 15, 1977

Mechanism of Nickel(0)-Catalyzed Dimerization of 1,3-Butadiene

Sir:

We wish to report details of the mechanism of the nickelcatalyzed dimerization of butadiene. Our results, taken together with the pioneering efforts of Wilke,¹ Heimbach,² and co-workers, allow a complete picture to be proposed for this intriguing transformation.

For the formation of divinylcyclobutane from butadiene we propose a series of complex, but well-precedented, steps. This mechanism, an expansion of an earlier suggestion of Mango³ and Heimbach and Traunmüller,⁴ is shown in Scheme I. The proposal has as key steps preferential formation of anti- π -allyl⁵ complex⁶ 3, and transformation of 3 via σ -allyls^{1c,7} 4 and 5 to syn- π -allyl 6. This latter species is clearly well disposed for the reductive elimination to yield cis-divinycyclobutane (8) via 7.

Examination of the mechanism in detail makes it clear that